Sections of the newly exposed bed of Kluane Lake contain small pinnacles. Wind has eroded sediments with a harder layer on top that forms a protective cap as the wind erodes softer and sandier sediment below. These pinnacles, just a few centimeters high, are small-scale versions of what are sometimes termed “hoodoos.” Photo: Jim Best / University of Illinois

By Hannah Devlin
17 April 2017
(The Guardian) – An immense river that flowed from one of Canada’s largest glaciers vanished over the course of four days last year, scientists have reported, in an unsettling illustration of how global warming dramatically changes the world’s geography.
The abrupt and unexpected disappearance of the Slims river, which spanned up to 150 metres at its widest points, is the first observed case of “river piracy”, in which the flow of one river is suddenly diverted into another.For hundreds of years, the Slims carried meltwater northwards from the vast Kaskawulsh glacier in Canada’s Yukon territory into the Kluane river, then into the Yukon river towards the Bering Sea. But in spring 2016, a period of intense melting of the glacier meant the drainage gradient was tipped in favour of a second river, redirecting the meltwater to the Gulf of Alaska, thousands of miles from its original destination.The continental-scale rearrangement was documented by a team of scientists who had been monitoring the incremental retreat of the glacier for years. But on a 2016 fieldwork expedition they were confronted with a landscape that had been radically transformed.For hundreds of years, the Slims carried meltwater northwards from the vast Kaskawulsh glacier in Canada’s Yukon territory into the Kluane river, then into the Yukon river towards the Bering Sea. But in spring 2016, a period of intense melting of the glacier meant the drainage gradient was tipped in favour of a second river, redirecting the meltwater to the Gulf of Alaska, thousands of miles from its original destination.

The retreat of the Kaskawulsh glacier has resulted in a drastic change in the destination of its meltwater. Source: Nature Geoscience. Graphic: The Guardian

The continental-scale rearrangement was documented by a team of scientists who had been monitoring the incremental retreat of the glacier for years. But on a 2016 fieldwork expedition they were confronted with a landscape that had been radically transformed.Dan Shugar, a geoscientist at the University of Washington Tacoma and the paper’s lead author, added: “The water was somewhat treacherous to approach, because you’re walking on these old river sediments that were really goopy and would suck you in. And day by day we could see the water level dropping.” […]Prof Lonnie Thompson, a paleoclimatologist at Ohio State University who was not involved in the work, said the observations highlight how incremental temperature increases can produce sudden and drastic environmental impacts. “There are definitely thresholds which, once passed in nature, everything abruptly changes,” he said. [more]

Receding glacier causes immense Canadian river to vanish in four days
A view of the ice canyon that now carries meltwater from the Kaskawulsh glacier, seen here on the right, away from the Slims river and toward the Kaskawulsh river. Photo: Dan Shugar / University of Washington Tacoma

ABSTRACT: River piracy—the diversion of the headwaters of one stream into another one—can dramatically change the routing of water and sediment, with a profound effect on landscape evolution. Stream piracy has been investigated in glacial environments, but so far it has mainly been studied over Quaternary or longer timescales. Here we document how retreat of Kaskawulsh Glacier—one of Canada’s largest glaciers—abruptly and radically altered the regional drainage pattern in spring 2016. We use a combination of hydrological measurements and drone-generated digital elevation models to show that in late May 2016, meltwater from the glacier was re-routed from discharge in a northward direction into the Bering Sea, to southward into the Pacific Ocean. Based on satellite image analysis and a signal-to-noise ratio as a metric of glacier retreat, we conclude that this instance of river piracy was due to post-industrial climate change. Rapid regional drainage reorganizations of this type can have profound downstream impacts on ecosystems, sediment and carbon budgets, and downstream communities that rely on a stable and sustained discharge. We suggest that the planforms of Slims and Kaskawulsh rivers will adjust in response to altered flows, and the future Kaskawulsh watershed will extend into the now-abandoned headwaters of Slims River and eventually capture the Kluane Lake drainage.

River piracy and drainage basin reorganization led by climate-driven glacier retreat