Long-term (after 300 years) responses of surface temperature and precipitation to CO2 increase.(A, C, and E ) Results of annual mean temperature (shading in °C): (A) the CTLCO2 minus the CTL (C) the ADJCO2 minus the ADJ, and (E) the difference between (C) and (A). (B, D, and F) Similar to (A), (C), and (E) but for the results of annual mean precipitation (shading in mm day−1). Graphic: Liu, et al., 2017 / Science Advances

By Stefan Rahmstorf
4 January 2017 (RealClimate) – A new model simulation of the Gulf Stream System shows a breakdown of the gigantic overturning circulating in the Atlantic after a CO2 doubling. A new study in Science Advances by Wei Liu and colleagues at the Scripps Institution of Oceanography in San Diego and the University of Wisconsin-Madison has important implications for the future stability of the overturning circulation in the Atlantic Ocean. They applied a correction to the freshwater fluxes in the Atlantic, in order to better reproduce the salt concentration of ocean waters there. This correction changes the overall salt budget for the Atlantic, also changing the stability of the model’s ocean circulation in future climate change. The Atlantic ocean circulation is relatively stable in the uncorrected model, only declining by about 20% in response to a CO2 doubling, but in the corrected model version it breaks down completely in the centuries following a CO2 doubling, with dramatic consequences for the climate of the Northern Hemisphere. The potential instability of the Atlantic Meridional Overturning Circulation or AMOC – commonly known as the Gulf Stream System – has been a subject of research since the 1980s, when Wallace Broecker warned in an essay in Nature of Unpleasant Surprises in the Greenhouse. The reason for this was growing evidence of abrupt climate changes in the history of the Earth due to instability of Atlantic currents. [more]

The underestimated danger of a breakdown of the Gulf Stream System

ABSTRACT: Changes in the Atlantic Meridional Overturning Circulation (AMOC) are moderate in most climate model projections under increasing greenhouse gas forcing. This intermodel consensus may be an artifact of common model biases that favor a stable AMOC. Observationally based freshwater budget analyses suggest that the AMOC is in an unstable regime susceptible for large changes in response to perturbations. By correcting the model biases, we show that the AMOC collapses 300 years after the atmospheric CO2 concentration is abruptly doubled from the 1990 level. Compared to an uncorrected model, the AMOC collapse brings about large, markedly different climate responses: a prominent cooling over the northern North Atlantic and neighboring areas, sea ice increases over the Greenland-Iceland-Norwegian seas and to the south of Greenland, and a significant southward rain-belt migration over the tropical Atlantic. Our results highlight the need to develop dynamical metrics to constrain models and the importance of reducing model biases in long-term climate projection.

Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate