Aerial view of forest fragments of the Brazilian Atlantic rainforest in Northeastern Brazil (Mata Atlântica), surrounded by sugar cane plantations. Photo: Mateus Dantas de Paula

14 February 2018 (Helmholtz Centre for Environmental Research) – Tropical forests around the world play a key role in the global carbon cycle and harbour more than half of the species worldwide. However, increases in land use during the past decades caused unprecedented losses of tropical forest. Scientists at the Helmholtz Centre for Environmental Research (UFZ) have adapted a method from physics to mathematically describe the fragmentation of tropical forests. In the scientific journal Nature, they explain how this allows to model and understand the fragmentation of forests on a global scale. They found that forest fragmentation in all three continents is close to a critical point beyond which fragment number will strongly increase. This will have severe consequences for biodiversity and carbon storage.In order to analyse global patterns of forest fragmentation, a UFZ research group led by Prof. Andreas Huth used remote sensing data that quantify forest cover in the tropics in an extremely high resolution of 30 meters, resulting in more than 130 million forest fragments. To their surprise they found that the fragment sizes followed on all three continents similar frequency distributions. For example, the number of forest fragments smaller than 10,000 hectares is rather similar in all three regions: 11.2 percent in Central and South America, 9.9 percent in Africa and 9.2 percent in Southeast Asia. “This is surprising because land use noticeably differs from continent to continent,” says Dr. Franziska Taubert, mathematician in Huth’s team and first author of the study. For instance, very large forest areas are transformed into agricultural land in the Amazon region. By contrast, in the forests of Southeast Asia, often economically attractive tree species are taken from the forest.When searching for explanations for the identical fragmentation patterns, the UFZ modellers found their answer in physics. “The fragment size distribution follows a power law with almost identical exponents on all three continents,” says biophysicist Andreas Huth. Such power laws are known from other natural phenomena such as forest fires, landslides and earthquakes. The breakthrough of their study is the ability to derive the observed power laws from percolation theory. “This theory states that in a certain phase of deforestation the forest landscape exhibits fractal, self-similar structures, i.e., structures that can be found again and again on different levels,” explains Huth. “In physics, this is also referred to as the critical point or phase transition, which for example also occurs during the transition of water from a liquid to gaseous state,” added co-author Dr. Thorsten Wiegand from UFZ. A particularly fascinating aspect of the percolation theory is that this universal size distribution is, at the critical point, independent of the small-scale mechanisms that led to fragmentation. This explains why all three continents show similar large-scale fragmentation patterns.The UFZ team compared the remote sensing data of the three topical regions with several predictions of percolation theory. In support of their hypothesis they found agreement not only for the fragment size distribution, but also for two other important indicators – the fractal dimension and the length distribution of fragment edges. “This physical theory allows us to describe deforestation processes in the tropics,” concludes Dr. Rico Fischer, co-author of the study. And that’s not all: this approach can also be used to predict how fragmentation of tropical forests will advance over the next decades. “Particularly near the critical point, dramatic effects are to be expected even in the case of relatively minor deforestation,” adds Taubert.Using scenarios that assume different clearing and reforestation rates, the scientists modelled how many forest fragments can be expected by 2050. For example, if deforestation continues in the Central and South American tropics at the current rate, the number of fragments will increase 33-fold and their mean size will decrease from 17 ha to 0.25 ha. The fragmentation trend can only be stopped by slowing down deforestation and reforesting more areas than deforesting, which currently is a rather unlikely option. Future satellite missions, such as Tandem-L, are of great importance for the timely and reliable detection of these trends.Advanced fragmentation of tropical forests will have severe consequences for biodiversity and carbon storage. On the one hand, biodiversity suffers because numerous rare animal species depend on large forest patches. For example, the jaguar needs around 10,000 hectares of contiguous forest to survive. On the other hand, the increasing fragmentation of forests also has a negative impact on climate. A UFZ team of scientists led by Andreas Huth described in Nature Communications in spring of last year that fragmentation of once connected tropical forest areas could increase carbon emissions worldwide by another third, as many trees die and less carbon dioxide is stored in the edge of forest fragments.Publication: Franziska Taubert, Rico Fischer, Jürgen Groeneveld, Sebastian Lehmann, Michael S. Müller, Edna Rödig, Thorsten Wiegand, Andreas Huth (2018): “Global patterns of tropical forest fragmentation”, Nature, http://dx.doi.org/10.1038/nature25508The study was conducted within the Helmholtz Alliance “Remote Sensing and Earth System Dynamics”.Related links:Online-Blog (Nature Ecology & Evolution Community, Behind the Paper) http://go.nature.com/2H8RgT0Press release on “Emissions from the edge of the forest” https://www.ufz.de/index.php?en=36336&webc_pm=11/2017The Helmholtz Alliance Remote Sensing and Earth System Dynamics http://hgf-eda.deTandem-L satellite mission https://www.tandem-l.de/

Deforestation in the tropics: A theory of physics explains the fragmentation of tropical forestsContinental-scale fragment size distribution of tropical and subtropical forests. Graphic: Taubert, et al., 2018 /  Nature

ABSTRACT: Remote sensing enables the quantification of tropical deforestation with high spatial resolution1,2. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests1,2,3,4. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions5,6,7 have been observed in many natural phenomena8,9such as wildfires, landslides and earthquakes. The principles of percolation theory7,10,11 provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory10,11, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments—at maximum by a factor of 33 over 50 years—as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.

Global patterns of tropical forest fragmentation