A mix of ice, sea water and methane bubbles are a common sight along the East Siberian Arctic Shelf, where a 2011 study looked at methane releases. Igor Semiletov  /  University of Alaska Fairbanks

By David Archer
7 January 2012 Let’s suppose that the Arctic started to degas methane 100 times faster than it is today. I just made that number up trying to come up with a blow-the-doors-off surprise, something like the ozone hole. We ran the numbers to get an idea of how the climate impact of an Arctic Methane Nasty Surprise would stack up to that from Business-as-Usual rising CO2. Walter (Phil. Trans. R. Soc. A (2007) 365, 1657–1676) says that Arctic lakes are 10% of natural global emissions, or about 5% of total emissions. I believe that was considered to be remarkably high at the time but let’s take it as a given, and representing the Arctic as a whole. If the number of lakes or their bubbling intensity suddenly increased by a factor of 100, and it persisted this way for 100 years, it would come to about 200 Gton of carbon emission, which is on the same scale as our entire fossil fuel emission so far (300 Gton C), or roughly the amount of traditional reserves of natural gas (although I’m not sure where estimates are since fracking) or petroleum. It would be a whopper of a surprise. Scaling Walter’s Arctic lake emission rates up by a factor of 100 would increase the overall emission rate, natural and anthropogenic, by about a factor of 5 from where it is today. The weak leverage is because the high latitudes are a small source today relative to tropical wetlands and anthropogenic sources, so they have to grow a lot before they make much difference to the sum of all sources. […] But the methane worst case does not suddenly spell the extinction of human life on Earth. It does not lead to a runaway greenhouse. The worst-case methane scenario stands comparable to what CO2 can do. What CO2 will do, under business-as-usual, not in a wild blow-the-doors-off unpleasant surprise, but just in the absence of any pleasant surprises (like emission controls). At worst comparable to CO2 except that CO2 lasts essentially forever.

An Arctic methane worst-case scenario Venting methane from a Russian lake is ignited by researchers. en.rian.ru / RealClimate

By David Archer
4 January 2012 Methane is a powerful greenhouse gas, but it also has an awesome power to really get people worked up, compared to other equally frightening pieces of the climate story. The largest methane pools that people are talking about are in sediments of the ocean, frozen into hydrate or clathrate deposits (Archer, 2007). The total amount of methane as ocean hydrates is poorly constrained but could rival the rest of the fossil fuels combined. Most of this is unattractive to extract for fuel, and mostly so deep in the sediment column that it would take thousands of years for anthropogenic warming to reach them. The Arctic is special in that the water column is colder than the global average, and so hydrate can be found as shallow as 200 meters water depth. On land, there is lots of methane in the thawing Arctic, exploding lakes and what not. This methane is probably produced by decomposition of thawing organic matter. Methane could only freeze into hydrate at depths below a few hundred meters in the soil, and then only at “lithostatic pressure” rather than “hydrostatic”, meaning that the hydrate would have to be sealed from the atmosphere by some impermeable layer. The great gas reservoirs in Siberia are thought to be in part frozen, but evidence for hydrate within the permafrost soils is pretty thin (Dallimore and Collett, 1995) […]

Much ado about methane