Tile drainage system flowing into a drainage ditch between agricultural fields in east-central Illinois in early spring before crop has emerged. Todd RoyerScienceDaily (Sep. 27, 2010) — Tile drainage in the Mississippi Basin is one of the great advances of the 19th and 20th centuries, allowing highly productive agriculture in what was once land too wet to farm. In fact, installation of new tile systems continues every year, because it leads to increased crop yields. But a recent study shows that the most heavily tile-drained areas of North America are also the largest contributing source of nitrate to the Gulf of Mexico, leading to seasonal hypoxia. In the summer of 2010 this dead zone in the Gulf spanned over 7,000 square miles.

Scientists from the U of I and Cornell University compiled information on each county in the Mississippi River basin including crop acreage and yields, fertilizer inputs, atmospheric deposition, number of people, and livestock to calculate all nitrogen inputs and outputs from 1997 to 2006. For 153 watersheds in the basin, they also used measurements of nitrate concentration and flow in streams, which allowed them to develop a statistical model that explained 83 percent of the variation in springtime nitrate flow in the monitored streams. The greatest nitrate loss to streams corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This area of the basin has extensive row cropping of fertilized corn and soybeans, a flat landscape with tile drainage, and channelized ditches and streams to facilitate drainage. “Farmers are not to blame,” said University of Illinois researcher Mark David. “They are using the same amount of nitrogen as they were 30 years ago and getting much higher corn yields, but we have created a very leaky agricultural system. This allows nitrate to move quickly from fields into ditches and on to the Gulf of Mexico. We need policies that reward farmers to help correct the problem.” David is a biogeochemist who has been studying the issue since 1993. “We’ve had data from smaller watersheds for some time, but this new study includes data from the entire Mississippi Basin. It shows clearly where across the entire basin the sources of nitrate are. “A lot of people just want to blame fertilizer, but it’s not that simple,” David said. “It’s fertilizer on intensive corn and soybean agricultural rotations in heavily tile-drained areas. There is also an additional source of nitrogen from sewage effluent from people, although that is a small contribution. It’s all of these factors together.” …

Cause of dead zone in Gulf: Tile drainage directly related to nitrate loss