Antarctic ice shelf collapse possibly triggered by ocean waves
ScienceDaily (Feb. 12, 2010) — Depicting a cause-and-effect scenario that spans thousands of miles, a scientist at Scripps Institution of Oceanography at UC San Diego and his collaborators discovered that ocean waves originating along the Pacific coasts of North and South America impact Antarctic ice shelves and could play a role in their catastrophic collapse.
Peter Bromirski of Scripps Oceanography is the lead scientist in a new study published in the journal Geophysical Research Letters that describes how storms over the North Pacific Ocean may be transferring enough wave energy to destabilize Antarctic ice shelves. The California Department of Boating and Waterways and the National Science Foundation supported the study. According to Bromirski, storm-driven ocean swells travel across the Pacific Ocean and break along the coastlines of North and South America, where they are transformed into very long-period ocean waves called “infragravity waves” that travel vast distances to Antarctica. … The study found that each of the Wilkins Ice Shelf breakup events in 2008 coincided with the estimated arrival of infragravity waves. The authors note that such waves could affect ice shelf stability by opening crevasses, reducing ice integrity through fracturing and initiating a collapse. “[Infragravity waves] may produce ice-shelf fractures that enable abrupt disintegration of ice shelves that are also affected by strong surface melting,” the authors note in the paper. …
Antarctic ice shelf collapse possibly triggered by ocean waves