Adult female muskox and two calves in Greenland during 2008-2009. (Eric Post, Penn State University)(Penn State) “The Arctic as we know it may soon be a thing of the past,” says Eric Post, associate professor of biology at Penn State University. Post leads a large, international team that carried out ecosystem-wide studies of the biological response to Arctic warming during the fourth International Polar Year, which ended in 2008. The team’s results will be reported on 11 September 2009 in the journal Science.

The team’s research documents a wide range of responses by plants, birds, animals, insects, and humans to the warming trend. The scientists found that the increase in mean annual surface temperature in the Arctic over the last 150 years has had dramatic effects. In the last 20 to 30 years, for example, the seasonal minimal sea ice coverage has declined by a staggering 45,000 square kilometers per year. Similarly, the extent of terrestrial snow cover has declined steadily, with earlier melting and breaking up and an earlier start to the growing season. “Species on land and at sea are suffering adverse consequences of human behavior at latitudes thousands of miles away,” declares Post. “It seems no matter where you look — on the ground, in the air, or in the water — we’re seeing signs of rapid change.”

The study led by Post shows that many iconic Arctic species that are dependent upon the stability and persistence of sea ice are faring especially badly. Loss of polar ice habitat is causing a rapid decline in the numbers of ivory gull, Pacific walrus, ringed seal, hooded seal, narwhal, and polar bear. The researchers found that Polar bears and ringed seals, both of which give birth in lairs or caves under the snow, lose many newborn pups when the lairs collapse in unusually early spring rains. These species may be headed for extinction.

The research also reveals that species once confined to more southerly ranges now are moving northward. Among the most visible invaders are red foxes, which are displacing Arctic foxes from territories once too cold for red foxes. Some of the less showy invaders that the scientists found also are moving northward include the winter moth, which defoliates mountain birch forests, and species of Low Arctic trees and shrubs, which affect the dynamics of trace-gas exchange. The presence of more shrubs and trees promotes deeper snow accumulation, increasing soil temperatures during the winter, and more microbial activity in the soil, which in turn makes the habitats more suitable for shrubs. Increasing the shrub cover may lengthen the period during the plant growing season when the tundra acts as a carbon-dioxide sink.

Countering this change, the research reveals, are musk oxen and reindeer, which browse on shrubs, limiting their carbon-soaking capacity and northward expansion to the High Arctic. Grazing, trampling, and defecation by these herbivores promote the growth and spread of grasses, which further attract geese. The geese in turn influence the productivity of lakes, where they rest and graze. The research indicates that complex aquatic and marine food webs like these are extremely vulnerable to alteration due to changes in temperature, precipitation, and nutrient load from the land. …

Dramatic biological responses to global warming in the Arctic