Graph of the Day: Mean Dissolved Oxygen Concentrations in the World's Oceans
Scientists confirm computer model predictions that oxygen-depleted zones in tropical oceans are expanding, possibly because of climate change
Scripps Institution of Oceanography / University of California, San Diego
MAY 1, 2008 An international team of physical oceanographers including a researcher from Scripps Institution of Oceanography at UC San Diego has discovered that oxygen-poor regions of tropical oceans are expanding as the oceans warm, limiting the areas in which predatory fishes and other marine organisms can live or enter in search of food. The new study is led by Lothar Stramma from the Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany, and is co-authored by Janet Sprintall, a physical oceanographer at Scripps Oceanography and others. The researchers found through analysis of a database of ocean oxygen measurements that levels in tropical oceans at a depth of 300 to 700 meters (985 to 2,300 feet) have declined during the past 50 years. The ecological impacts of this increase could have substantial biological and economical consequences. “We found the largest reduction in a depth of 300 to 700 meters (985 to 2,300 feet) in the tropical northeast Atlantic, whereas the changes in the eastern Indian Ocean were much less pronounced,” said Stramma. “Whether or not these observed changes in oxygen can be attributed to global warming alone is still unresolved. The reduction in oxygen may also be caused by natural processes on shorter time scales.”
Sprintall said the oxygen-poor areas have the potential to move into coastal areas via currents that flow from the mid-depth tropical oceans, where the oxygen changes were observed, and along the west coast of continents. “The width of the low-oxygen zone is expanding deeper but also shoaling toward the ocean surface,” said Sprintall, a specialist in observing changes of fluxes in ocean properties such as heat distribution. …